Mobilization of manganese by basalt associated Mn(II)-oxidizing bacteria from the Indian Ridge System.
نویسندگان
چکیده
The Indian Ridge System basalt bearing Mn-oxide coatings had todorokite as the major and birnesite as the minor mineral. We posit that microorganisms associated with these basalts participate in the oxidation of Mn and contribute to mineral deposition. We also hypothesized that, the Mn-oxidizing microbes may respond reversibly to pulses of fresh organic carbon introduced into the water column by mobilizing the Mn in Mn-oxides. To test these two hypotheses, we enumerated the number of Mn-oxidizers and -reducers and carried out studies on the mobilization of Mn by microbial communities associated with basalt. In medium containing 100 μM Mn(2+), 10(3) colony forming units (CFU) were recovered with undetectable number of reducers on Mn-oxide amended medium, suggesting that the community was more oxidative. Experiments were then conducted with basalt fragments at 4±2 °C in the presence 'G(+)' and absence 'G(-)' of glucose (0.1%). Controls included set-ups, some of which were poisoned with 15 mM azide and the others of which were heat-killed. The mobilization of Mn in the presence of glucose was 1.76 μg g(-1) d(-1) and in the absence, it was 0.17 μg g(-1) d(-1) after 150 d. Mn mobilization with and without added glucose was 13 and 4 times greater than the corresponding azide treated controls. However, rates in 'G(+)' were 16 times and 'G(-)' 24 times more than the respective heat killed controls. The corresponding total counts in the presence of added glucose increased from 1.63×10(6) to 6.71×10(7) cells g(-1) and from 1.41×10(7) to 3.52×10(7) cells g(-1) in its absence. Thus, the addition of glucose as a proxy for organic carbon changed the community's response from Mn(II)-oxidizing to Mn(IV)-reducing activity. The results confirm the participation of Mn oxidizing bacteria in the mobilization of Mn. Identification of culturable bacteria by 16S rRNA gene analysis showed taxonomic affiliations to Bacillus, Exiguobacterium, Staphylococcus, Brevibacterium and Alcanivorax sp.
منابع مشابه
Diverse Mn(II)-Oxidizing Bacteria Isolated from Submarine Basalts at Loihi Seamount
Metal-oxidizing bacteria may play a key role in the submarine weathering of volcanic rocks and the formation of ferromanganese crusts. Putative fossil microbes encrusted in Mn oxide phases are commonly observed on volcanic glasses recovered from the deep ocean; however, no known Mn(II)-oxidizing bacteria have been directly identified or cultured from natural weathered basalts. To isolate epilit...
متن کاملPopulation Structure of Manganese-Oxidizing Bacteria in Stratified Soils and Properties of Manganese Oxide Aggregates under Manganese–Complex Medium Enrichment
Manganese-oxidizing bacteria in the aquatic environment have been comprehensively investigated. However, little information is available about the distribution and biogeochemical significance of these bacteria in terrestrial soil environments. In this study, stratified soils were initially examined to investigate the community structure and diversity of manganese-oxidizing bacteria. Total 344 c...
متن کاملIsolation and Characterization of a Mn(II)-Oxidizing Bacillus Strain from the Demosponge Suberites domuncula
In this study we demonstrate that the demosponge Suberites domuncula harbors a Mn(II)-oxidizing bacterium, a Bacillus strain, termed BAC-SubDo-03. Our studies showed that Mn(II) stimulates bacterial growth and induces sporulation. Moreover, we show that these bacteria immobilize manganese on their cell surface. Comparison of the 16S rDNA sequence allowed the grouping of BAC-SubDo-03 to the Mn-p...
متن کاملManganese‐oxidizing bacteria mediate the degradation of 17α‐ethinylestradiol
Manganese (II) and manganese-oxidizing bacteria were used as an efficient biological system for the degradation of the xenoestrogen 17α-ethinylestradiol (EE2) at trace concentrations. Mn(2+)-derived higher oxidation states of Mn (Mn(3+), Mn(4+)) by Mn(2+)-oxidizing bacteria mediate the oxidative cleavage of the polycyclic target compound EE2. The presence of manganese (II) was found to be essen...
متن کاملManganese-oxidizing and -reducing microorganisms isolated from biofilms in chlorinated drinking water systems.
The interaction of chemical, physical and biological factors that affect the fate, transport and redox cycling of manganese in engineered drinking water systems is not clearly understood. This research investigated the presence of Mn-oxidizing and -reducing bacteria in conventional water treatment plants exposed to different levels of chlorine. Mn(II)-oxidizing and Mn(IV)-reducing bacteria, pri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 95 شماره
صفحات -
تاریخ انتشار 2014